
iGlue.v3: An Electronics Metaphor for Multimedia
Technologies Integration

Tony Cabello-Miguel Oscar Fernández-Barracel Oscar García-Panyella

Audiovisual Technologies Department. Ramon Llull University.

Quatre Camins 2, 08022 – Barcelona (Spain)
Phone: +34 932 902 420

{ antonic, is05781, oscarg } @salleURL.edu

ABSTRACT
The iGlue Project is a set of tools meant for the integration of
different multimedia technologies in creative applications like
multimedia installations or live audiovisual shows.

Inspired by the way of working used in electronics, similar
concepts are developed in a visual environment to interactively
build applications out of components, wires and circuits. This
approach enhances the entire R&D workflow, providing for
application prototyping, empirical experimentation, collaborative
work, software recycling and simplified maintenance.

Categories and Subject Descriptors
D.2.m [Software Engineering]: Miscellaneous – Rapid
Prototyping, Reusable Software.
H.5.2 [Information Interfaces and Presentation]: User
Interfaces – Graphical user interfaces (GUI).

General Terms
Design, Experimentation, Languages, Verification.

Keywords
Electronics UI Metaphor, Multimedia Technologies Integration,
Interactive Development, Collaborative Work, Application
Modeling, Component System.

1. INTRODUCTION
After more than 5 years of R&D, a new software tool, called
iGlue, is formally presented. It is built on a novel metaphor
coming from the electronics world, and has been implemented
with techniques successfully used in other software packages.
iGlue provides an easy & fun-to-use GUI, along with a set of
tools and libraries. This combination provides new levels of
collaborative work between artists and developers.
The main motivation for building the whole system was its

application for entertainment and performance, in which the
interaction with real time graphics is a key problem to solve. For
this reason, while designing the underlying system to be media
independent, the testing and experimentation phase was focused
on real time graphics. Thankfully, current graphics acceleration
APIs are mature enough for this task to be done in a general
environment efficiently. Once the testing phase was finished, the
resulting practices were successfully used to integrate other media
technologies into the system, proving the media independence of
the system core.

2. SYSTEMS PHILOSOPHY
In a world with an increasing number of technologies and devices,
iGlue has been designed to easily interconnect all of them in
applications like multimedia installations or audiovisual shows.
The main part of iGlue is the design tool based on an electronics
metaphor. Each device and media file is represented as a
component on screen. These can be easily linked together with
wires to build complex circuits. Circuits define rules for
connecting input devices like video cameras, midi instruments,
media files like images, videos, 3D scenes, and output devices
like video projectors. iGlue circuits can be easily controlled by
custom made interfaces that can be created with programs like
Macromedia Flash [1].
For instance, a circuit can mix a video camera input with some
video files and show the result on a secondary monitor, while the
parameters of the mixing are controlled by a video mixer-like
interface built with Macromedia Flash.

3. STATE OF THE ART
Not only has electronics engineering inspired a solution for
complex software development through component technologies
(COM [2], CORBA [3], etc), it has also greatly influenced the
graphics interface of all kinds of applications through the use of
schematics to represent complex processes (Maya [4],
Combustion [5], Reaktor [6], etc).
Pd [7] is another well known instance of a general purpose
component-based graphical environment, initially developed for
real time music generation, and possibly for this reason too
focused on programmability, which makes it difficult for artists to
understand. It also lacks advanced features for developers, which
can not deal with an intermediate layer between the GUI and its
components.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.
MM’04, October 10–16, 2004, New York, New York, USA.
Copyright 2004 ACM 1-58113-893-8/04/0010...$5.00.

644

DirectShow [8] also uses a graphical representation greatly
inspired by electronics schematics, but is only meant for software
developers. Touch [9] is a great example of parametric controlling
of graphics effects, but is a tool only aimed at artists. Max/MSP
[10] and VVVV [11] are Pd-like environments, strong on image
processing and hardware device interconnection respectively but
with the same limitations as Pd.

4. CONCEPTUAL DESIGN
4.1 Visual Representation
As can be seen in Figure 1, the representation of the Hello World
Circuit is very close to an electronics schematic. Below is a list of
all the elements that can be visually represented on the interface:

• Components: Blocks that resolve a specific task by operating
on signals (data). Shown as big rectangles with the component
name at the top.
o Pins: Elements for allowing the communication of data

with other components. Input pins are represented as
small rectangles on the left side of the component body,
and output pins on the right. The pin name is shown next
to the pin inside the component body.

- Immediate Value: A fixed value passed to a pin.
Represented next to the pin outside the component
body.

o State: This will determine the ability of a component to
operate on the signals. Represented as a colored square in
the upper left corner of the component.

- On: Loaded and operating normally. Green.
- Disabled: Loaded but not operating on signals. Blue.
- Not Ready: Not ready to be loaded while lacking the

required signals at its input pins. Yellow.
- Failed: The component caused an operation error and

has been switched off for security reasons. Red.
- Off: The component is neither loaded nor operating.

Its output pins act as if they were not connected
anywhere. Gray.

• Wires: Links between output and input pins.

4.2 Execution Model
The circuit in Figure 1 works as follows: the first component (on
the left) initializes a console (the window shown on the right).
Then a component prints “Hello” and appends a carriage return.
The last component finally prints “World!” on the console. Wires
in iGlue are conceptually used to transmit data between pins, then
circuits can be seen just as data-path representations. In order to
work correctly, this approach requires some rules to be followed
in the component implementation:

• Data objects are managed by their creator component and the
rest of the components are only allowed to read or modify
their value.

• Components must not save their internal state anywhere but
in the objects, because otherwise this would lead to non-
repeatability of results when altering the circuit topology.

The components are cyclically executed in a frame based
cadence. The exact order depends on the data dependencies
imposed by the connections, which is an effect also known as
cascading.

5. SYSTEMS ARCHITECTURE
5.1 Overview
The iGlue system is clearly separated into 4 different layers, each
aimed at a specific user role:

• Hardware and data files: Multimedia devices (Video cameras,
Sensors, etc), and artistic data (Images, Sounds, etc). Artists
are in charge of handling this material.

• Component System: This layer allows the integration of
external technologies in the system. Advanced developers
create those components, like: ConsoleInit, ConsolePrint,
ImageLoad, DisplayInit, etc.

• Core: An API which allows circuits to be created
programmatically through component interconnection. To be
used by advanced developers in the creation of full featured
applications.

• iGlue Circuit Designer (iDesigner): A tool provided by the
project, built on the Core API. It contains a graphical
environment for managing and interacting with circuits.
Circuits can also be fed with external data coming from
Macromedia Flash applications for instance. This layer is
specially aimed at novice developers and artists.

5.2 Implementation
Although the Core is completely media independent and OS-
independent, currently developed components and the iDesigner
tool are designed for Win32. It becomes clear that it makes it
difficult to port the whole system to other platforms.
Although the user base of the Mac environment (mostly artists) is
well suited for this kind of project, iGlue will still rely on the
Win32 platform because it is the most cost effective for this kind
of development. This is due to the availability of better hardware
and software, which also means increased support and resources.
Anyway, it is still possible to feed an iGlue circuit from a custom
Mac application.

Figure 1: Hello World circuit

645

Both the core and the components are programmed in C++ for
performance reasons. The iDesigner tool is built with Managed
C++ [12] and OpenGL [13] graphics for faster GUI development.
As the global objectives of the project were very general, a Spiral
lifecycle was chosen for approaching a good solution over several
project versions (currently five).
The project was intended for multi-person development, so from
the very beginning some conventions were chosen for
programming: Java-like Subset of C++ and JavaSoft Coding
Conventions [14].

5.3 Components
Components are the way for developers to extend iGlue with new
functionality. They communicate with each other with typed data
objects. There are five standard data-types: bool, char, int, float
and string. External data types can be defined by extending the
Object class and using the new type in the pin definition. It is a
task of the component developer to match the object definition
among all the components using each custom type.

5.3.1 Component Technology
The component technology is a proprietary system implemented
the same way as most plug-in based systems (3ds max [15] for
instance). Each Component has to implement a standard interface,
in order to provide:

• Creating new instances of the current component.
• Getting the component type and pin-out info.
• Connecting its pins to other components.
• Switching ON/OFF, and running it.

Additionally, groups of components are packed into a single DLL
(a ComponentPack) for better repository organization. The DLL
exports four functions used by the container to obtain instances of
each one of the components at run-time.
As this system has been specifically designed for this task, it
fulfills the needs better than a general component technology like
COM [2] or CORBA [3]. Advanced features like auto-description
are supported through the retrieval of the pin-out definition,
which allows for any kind of component to be transparently
integrated into the system. Even individual pins can offer a
specific range of acceptable values for user friendly parameter
choosing. Additionally, component versioning is allowed through
the use of versioned Component Packs. On the other hand pin-out
versioning is not tracked, as it is an inherent problem of changing
the pin-out definition during the development process.

5.3.2 Component Skeleton Generator
The process of generating the component skeleton from the
definition (pin-out) is very repetitive and time-consuming, so it is
prone to syntactic errors. Even worse, when a component
definition has to be changed, there is a greater chance of different
kinds of errors being introduced. Generating all of this code from
the pin-out while preserving the specific code of each component
from version to version is the task of the skeleton generator tool.
A Component Pack has all of its pin-out definitions in an XML
[16] file, which is fed to the tool for generating the barebones
implementation of each component interface. It is up to the
programmer to fill out the result with the component
functionality. The tool also allows pin-out definitions to be altered
while keeping the old component implementations. Needless to

say, this should be updated by the programmer to fit the new
definition.

5.4 Circuits
In order to increase the versatility of component interconnection,
pin definitions can include a combination of usage hints:

• Optional: It is not necessary for an optional pin to be
connected for its owner component to run.

• Isolated: An isolated pin will not modify the signal at the
output pin where it is connected, so it can share the
connection with other isolated input pins.

• Static: A static pin resets its owner component each time the
signal connected to the pin changes.

The Core takes care of the validity of the connections in a circuit,
while following these rules:

• There is only one direction possible: output pins connected to
input pins.

• Feedbacks are not allowed, neither directly nor indirectly.
• Pins must be equally typed in each connection.
• Only isolated outputs can be connected to more than one

isolated input at a time.
• It is recommended that an immediate value is assigned to

static pins rather than connecting them, because a constantly
changing value will cause continuous component resets, and
sometimes that can not be spotted easily.

• Connection to an output pin does not take effect until the
source component is powered on. If the source component is
disabled and the target pin is non-optional, the connection will
still be correct. However, it is very likely that the target
component will also get disabled or will even be unable to
work in some cases.

As in electronics, all iGlue components automatically include
“enable” and “power” pins. These allow the user to switch on/off
and enable/disable any component at a given time without
changing the circuit topology. Both pins are bool typed, so any
component outputting bool values can be used to control them.

5.5 Core
The Core implementation is a 1:1 relationship with iGlue
concepts. It defines all the required classes like Pin, Wire,
Component, Board, etc. Boards are implemented as a list of
Instances (both Components and Boards), sorted after each
operation that changes the topology i.e. connecting a wire. The
sorting process guarantees that each instance will be ordered
before any other instance depending on it, with the output-only
component instances at the beginning of the list. This way, the
execution of static circuits is optimal, with no other overhead than
the list iterator even with changing parameter values and
enabling/disabling operations. Topology changing operations like
connecting/disconnecting wires suffer from a small impact as they
force the sorted state of the list to be validated. This approach
avoids the implementation of a very complex scheduler, as each
circuit can be seen as a directed acyclic graph (DAG) with an
implicit execution order.
Execution of the circuits occurs in a frame-based cadence, with a
maximum (configurable) speed of 100 times a second so as not to
waste CPU cycles under low load conditions. This speed is
enough for graphics applications, since most of the time the
Vertical Sync is already limiting the speed to 50/60fps. Under this

646

execution model, audio components have to be programmed with
a buffered approach, with parameter modifications on a frame-
timed basis. Anyway, as long as iGlue is intended to be used for
real time applications (> 25fps), it does not pose a big problem.

5.6 Boards
All the components, wires and immediates in a circuit are
contained in a board, which is physically stored as an ASCII file
in order to be readable by any text editor. The topmost board will
be considered the main-board.
Sections of circuits can be selected within the graphics
environment in order to create a new board. These boards will
behave exactly like any other component, and since they store
fully featured circuits, they are great for simplifying component
pin-outs (i.e.: forcing some of their pins to have a default value)
or for packing common component combinations into simpler
blocks. Additionally, boards can be updated on the road by
modifying their circuits and even their pin-outs.

5.7 Circuit Designer
The circuit designing tool of iGlue (iDesigner) is expected to be
the primary means of interacting with the whole system, in most
kinds of projects, except in custom application development. For
this reason, iDesigner has been designed to offer the best clarity
and usability, since it will be used most of the time.

As can be seen in Figure 1, in the lower left-hand corner of the
interface there is the name of the current board and its current
state. While the board is OFF, every component switched ON will
show up as "not ready". This way one can stop the whole board at
once, just as if it was a global power switch.

5.7.1 Graphics Design
Representation of iGlue circuits involves the same problems as
representing electronics schematics. Some information is required
to be on screen at design time, while other information needs to
be at hand. After some testing, it was decided that some
information was to be statically shown on the screen: component
types, component states, pin names, wires and immediate values.
On the other hand, pin types and usage hints are shown in a tool-
tip when the mouse cursor is over the pin representation. This
particular design requires a lot of screen space and therefore a
high resolution display.
Older schematic software like Pd [7], represented similar circuits
in much less space by hiding pin names. This allowed a
component to be represented as a simple rectangle containing the
component name and surrounded with small squares as pins. The
connection wires went vertically from top to bottom, resulting in
much more compact schematics. The limited amount of on-screen
information of this representation noticeably affected the learning
curve and the tool usability, and since modern displays are
continuously growing in resolution, the alternative was adopted as
an evolution for greater clarity.
Wire routing and automatic component placement was left
pending for subsequent software revisions.

5.7.2 Usability
At the same time that a circuit has to be represented, it must be
possible to apply a collection of commands to each of its
elements.

There is a contextual menu that shows up when right-clicking on
the working area. As it is contextual, it will show the available
operations for the clicked object: board, component, pin. The
main contextual menu, which pops up when clicking on the board
background is shown in Figure 2.

Figure 2: Main contextual menu

As a second example, Figure 3 shows the pin contextual menu. It
contains just two commands: Choose Value and Reset Pin. Of
specific interest is the former, as it allows for a very elegant file-
choosing mechanism. As the component is asked for the list of
values the clicked pin can accept, it can provide a filtered file list
with all the valid strings, based on current disk contents.
Additionally, nearly all basic operations can also be done with
simple mouse actions such as dragging (moving components,
navigating through the circuit, creating/modifying/removing
wires, altering immediate numerical values), double clicking
(switching on/off components and the whole main-board, toggling
immediate Boolean pins), dragging with the CONTROL key
pressed (selecting/unselecting components), mouse-wheel
(zooming in/out).
As seen in Figure 1, in the lower part of the interface, there are
three standard controls: a button, a non-editable text-box, and an
editable text-box. The non-editable text-box shows the error
messages. If they do not fit in the text-box, the button can be
pressed for the full message to show up in a pop-up window. The
editable text-box is active when clicking on a non wired pin,
allowing for immediate value creation and modification.
Another thing that greatly increased the usability of the tool was
the component coloring. A color is determined for each
component by applying a hash function on its type. As the
number of colors is limited to be distinguishable between them,
different typed components are often equally colored. But rather
than giving each color a special meaning, the most important
thing here is that color enables our visual memory for better
orientation on a big circuit, and allows for faster navigation.

647

Figure 3: Pin contextual menu

Pin representation was also a critical point of the UI design. Lots
of operations could be carried out at each pin (connecting,
selecting, etc), so size was also important in order for them to be
easily selected with the mouse. Additionally, the pin context
menu has different options from the component context menu. For
those reasons, pins should be represented as wide as possible, and
have to be located outside the component body, just as in
traditional electronics schematics software.

6. INTERACTING WITH IGLUE
Application interactivity can be done in four different ways.
Components retrieving device information (like Video cameras,
Sensors, etc) can directly drive other components. iDesigner also
provides some degree of interactivity, although it is only intended
for experimentation and testing. When more complex control-
logic is needed for driving the circuit, there are two different
possibilities: Static Circuit Interaction and Dynamic Circuit
Interaction.

6.1 Static Circuit Interaction
In the “Util” Component Pack, there is a set of components meant
for receiving data over the network (Util.ReceiveFloat,
Util.ReceiveInt, etc). These components have an input pin for
defining the receiving port, and an output pin for supplying the
received data to other components. Then any external application
will be able to send data to this port over the network.
Additionally, the counterpart components are provided in order to
send data from the circuit to an external IP:port.
It is worth noting that this feature is not a part of the Core nor the
iDesigner, as it has been added through an iGlue Component.
Additional features like encrypted communications can be
integrated through other components the same way.
One interesting application built on this interaction type is a
special Macromedia Flash player capable of sending variable
values to specific IP:ports. This allows rich graphical interfaces to
be created, which can feed parameters to all kind of iGlue circuits
remotely. The downside is that circuit topology can only be
altered in a limited way, by enabling/disabling components or
even changing filename strings. If more control is required, it is
possible to use the dynamic circuit interaction feature.

6.2 Dynamic Circuit Interaction
A feature not even contemplated in schematic software like Pd
[7], is to offer a Circuit API in order to build custom applications

directly over the Core and the Components. This way,
applications can build completely different GUI metaphors using
dynamic circuits under the hood, by connecting and disconnecting
components depending on user actions.
This approach has two key benefits for application developers:

• An application can be built out of existing components,
centering efforts on the UI development.

• As already happens with plug-in based applications, they can
be updated and upgraded externally without recompilation.
With iGlue, it is even possible to upgrade an application to
handle new kinds of media through new components, thanks
to the media independency the Core provides.

Windows applications can be built on the Circuit API by just
linking the Core library statically. Additionally, any .Net
application (such as iDesigner) can also do that thanks to the
iCore wrapper class.

7. APPLICATION CASE STUDY
For better understanding of the whole iGlue architecture, a real
application case will be examined step by step.

7.1 Designing the DX9 Component Pack
The most important part of a component pack is the definition of
the component pin-outs, since this will effectively determine the
potential of the whole component pack. A simple approach in
each component definition will result in very complex circuits,
while massively featured component pin-outs would not be
flexible enough. It is like designing a “Lego” block game: the
exact balance of simplicity and features per block is the key to
building any kind of construction easily. Finding this tradeoff
involves testing each design in real world applications. The final
component definition is the result of a detailed study of common
graphics techniques and an extensive process of trial and error.
There are two different factors involved in component pin-out
design: operations and data-types. In the “Lego” example, the
former could be seen as the block shapes while the data-types
would be the connectors shape. For this reason, it is good to have
as few connector shapes as possible in a block set, in order to
maximize the number of blocks that can be connected together.

7.2 Implementation of the DX9 Components
DirectX [8] was finally chosen for the graphics engine because of
its integrated full featured gaming library and its compatibility
with a wide range of graphics acceleration cards. These two
aspects reduce the development time in big application
development, especially on small programming teams.
The core of the graphics engine has been designed as a common
scene-tree with meshes, cameras, animations and materials stored
in its leaves. Most of the components have been designed as an
interface for controlling the scene graph, such as altering
animations, changing parameters, etc. The material definition is
done with HLSL (High Level Shader Language) [8] which allows
control of the programmable graphics pipeline.

7.3 Using the DX9 Component Pack
Figure 4 shows a basic DX9 circuit, which simply loads and
displays a Texture (Image). The component DX9.DevInit
initializes the DirectX system while creating the window.

648

DX9.TexLoad loads the specified texture from the disk.
DX9.DevClear clears the frame-buffer, then TexPaint draws the
texture on the frame-buffer. Finally the DX9.DevFlip component
is arranged to show the color buffer on the window.
TexPaint is a board which encapsulates the five component circuit
which performs the task of drawing a textured square on screen. It
provides some optional pins for user supplied transformation
matrix and color to be applied to the square. Finally, the effect pin
allows us to select the shader that will be applied when drawing
the texture.
Here the “texture” data-type serves to generalize very different
graphics media: still images, videos, live video input and
computer generated graphics (3D scenes). It lends excellent
flexibility for interconnecting components and is a perfect
mapping to the graphics acceleration hardware.

7.4 Interactive Prototyping
Instead of painting the texture onto a square, it is also quite easy
to apply it to any kind of polygonal mesh, even animated. All
these possibilities allow for the creation of all sorts of real time
graphics effects. Some of them have already been implemented
with circuits: spatial blurs, temporal blurs, fur, glow,
deformations, etc. Needles to say every parameter of these effects
is available on the circuit, so it can be changed or controlled in
real time.
Therefore using this Component Pack and thanks to the graphics
interface, all kinds of new graphics effects can be interactively
prototyped, instead of writing code and recompiling the

application to see the results. Additionally, these instant results
can lead to new approaches during the creation process. Although
artists can build some simple DX9 circuits on their own,
developing most graphics effects out of components still requires
a lot of technical knowledge, then it is a way of enhancing the
development time of experienced programmers.

7.5 Interactive Experimentation
Despite the complexity of creating graphics effects with the DX9
Component Pack, artists can still use the Circuit Designer tool to
combine circuits and tweak configurations. As the interface
provides interactive results, the artist can experiment by plugging
devices and media on his own. This process can bring new ideas,
which programmers can use to develop new components or
enhance the existing ones. This form of collaborative work is due
to the new visual language that brings artists and developers
together.

7.6 Parametrization
Once a circuit is built in iDesigner, it can be fed externally, as
seen in section 6.1. In fact, a special application has been
developed for artists using Macromedia Flash [1] to control
circuits from Action Script. The application just sends variable
values to the specified IP:port, allowing the artists to build their
own graphics interfaces (out of Flash components) to
parameterize a circuit as they like.
For instance, a media player-like interface can be easily designed
in Flash, to control a simple video-playing circuit. Then adding

Figure 4: Texture Paint Circuit

649

new components to the circuit will allow the interface to control
additional parameters as colour, brightness, etc. Another
possibility is inserting another TexPaint component in the circuit
in order to have an extra layer. The interface will be able to
control the mixing through the opacity of each layer, as in the
interface shown in Figure 5.
Once built, it is possible to upgrade this application in order to
deal with new video formats or new video effects just by
upgrading the components. Another possibility that does not
involve changing the interface is dealing with new technologies.
This is possible just by modifying the circuit and applying the
parameter values to other components, such as audio or lighting
machinery.

Figure 5: A Video Mixing interface built with Macromedia

Flash
Input devices like joysticks, MIDI [17] controllers and the like,
will be easily integrated into the Flash interface, as our
Macromedia Flash player can also receive values from external
circuits.

7.7 Advanced applications
A step beyond the interface built with Macromedia Flash is a
custom application using the technique seen in section 6.2. This
will be needed in case of a variable number of video layers or
effects applied to each one. On such an interface, the circuit will
be dynamically built depending on user actions in order to
achieve the expected results.
This application will still benefit from all the features seen in the
previous section, as Components and Circuits can be updated
without recompiling the application. It is even possible, in a video
sequencing-like application built this way, to change its internal
graphics engine from DirectX to OpenGL without recompiling a
single line of the application.

8. RESULTS
“The Hit VR” [18], was developed with the iGlue.v2 system
(which still did not include a graphics interface), as well as old
OpenGL components. However, it is still a great example of the
iGlue concept in action, as it saved an important amount of
development time due to the reutilization of previously developed
components. Those components implemented a 3D engine which
was used to fly around the 3D scene modeled by the artist. “The

Hit VR” is the virtual reality version of “The Hit” [19], a short
film by Jordi Moragues, an award-winner at Imagina’94. Through
the use of a VR headset with an integrated tracker, the camera
orientation changes accordingly to immerse the user into the short
film. Various brands of VR headsets have been seamlessly
integrated into the application, just by programming new
components. Figure 6 shows the whole system running, along
with some screenshots.
iGlue.v3 has been successfully used in various real applications,
most of them based on the DX9 Component Pack. As a first test,
a circuit simulating a Real Time Volumetric Light Effect was
created out of standard DX9 components. Then a wireless
joystick was used to control the light intensity and direction as
can be seen in Figure 7.

Figure 6: The Hit VR through the VR headset along with 2

screenshots of the application

Figure 7: Top: Volumetric Light Effect, VideoWall

application. Bottom: Videojockeying application on stage.
Next, a Video Wall application was built out of a simple video
playing circuit. Four computers running iGlue were used to form
an image controlled from a single Flash application. The entire
application was developed by a Flash programmer who was only
provided with the basic video playing circuit. The complete
installation is shown in Figure 7.

650

Finally, a videojockeying application using the dynamic circuit
interaction approach was built. A graphics interface was designed
to meet specific artistic requirements: lots of video layers, music
synchronized sequencing and tangible controllers. The GUI was
used to arrange the clips and effects on a timeline while the
tangible controllers were used to change the effects parameters
interactively. This allowed the performer to play video
compositions on the rhythm of the music. The MIDI controller
and the application on stage is shown in Figure 7.
iGlue.v3 is available for download at [20], as it has been released
as a Freeware tool.

9. CONCLUSIONS AND FUTURE WORK
Through empirical testing, the current version of iGlue has been
proven to offer the following benefits:

- The component architecture allows better software
development and maintenance, and provides for a natural
effort reutilization.

- The true media independence of the core allows the
integration of new technologies transparently into iGlue
applications, as long as they only rely on components and
circuits. Independence from the visual environment allows
any kind of custom software to be developed, through the use
of dynamic circuits.

- The visual tool offers a clear and productive interface to work
and interact with circuits. It results in an enhancement of the
workflow between artists and developers as it serves for rapid
prototyping, effects modeling and experimentation. Circuits in
the visual environment can be parametrically controlled or
sequenced externally for simplified development.

- There are a large number of technologies successfully
integrated into iGlue: State-of-the-art 3D graphics through
DirectX9, Keyboard, Mouse and Joystick through
DirectInput8, TCP/IP intercommunication, MIDI music
control, Video Capturing through DirectShow, and
Macromedia Flash. Apart from the discontinued OpenGL and
VR headset components which were available in previous
versions.

There is still a long road ahead as there are many areas which can
be further polished:

- The core needs to be optimized for dealing with really huge
circuits, as working with boards increases the circuit
complexity exponentially. Additionally, a feature worth being
directly supported at this level is remote circuit management.

- Elements should be even better organized and displayed on
screen. More control elements should be provided on the GUI
for better circuit interaction.

- Some key multimedia technologies remain to be fully added
to the iGlue repository, such as DirectPlay (for enhanced
networking features) and audio processing.

10. ACKNOWLEDGMENTS
The following people have contributed in different ways to this
project, from discussing techniques to testing or giving invaluable

advice: Alvaro Uña, Joan Coll, Jorge Cabezas, Jordi Carlos, Jordi
Cabeza, Mikko E. Mononen, David Notario, Alex Evans, Rosa
Ros, Francisco González, David Domingo, Ricardo Cabello,
Alberto Garcia, Victor Jurado, Josep Garrido, Javier Campos and
all the people from the Audiovisual Technologies Department at
La Salle.
This project could not have been carried out without
unconditional support from our family and close friends. We
extend our sincere gratitude to them.

11. REFERENCES
[1] Macromedia, “Flash”,

http://www.macromedia.com/software/flash
[2] Microsoft Corporation, “COM: Component Object Model”,

http://www.microsoft.com/com
[3] Object Management Group, “CORBA: Common Object

Request Broker Architecture”, http://www.omg.org
[4] Alias Systems Corp., “Maya”,

http://www.alias.com/eng/products-services/maya/
[5] Discreet, “Combustion”,

http://www4.discreet.com/combustion/
[6] Native Instruments, “Reaktor”,

http://www.native-instruments.com/index.php?reaktor4_us
[7] Miller Puckette, “Pd real-time music and multimedia

environment”,
http://www-crca.ucsd.edu/~msp/software.html

[8] Microsoft Corporation, “DirectX”,
http://www.microsoft.com/directx

[9] Derivative Inc., “Touch”, http://www.derivativeinc.com
[10] Cycling '74, “Max/MSP”, http://www.cycling74.com
[11] Meso, “VVVV”, http://vvvv.meso.net
[12] Microsoft Corporation, “.Net Platform”,

http://www.microsoft.com/net
[13] Silicon Graphics Inc, “OpenGL”, http://www.opengl.org
[14] Sun Microsystems, “JavaSoft code conventions”,

http://java.sun.com/docs/codeconv
[15] Autodesk Inc, “3D Studio Max”,

http://www.discreet.com/3dsmax
[16] W3C, “XML: Extensible Markup Language”,

http://www.xml.com
[17] Midi Manufacturers Association Inc, “MIDI: Musical

Instrument Digital Interface”, http://www.midi.org
[18] Oscar Fernandez & Tony Cabello, “THE HIT VR”,

http://www.salleurl.edu/~is05678/iglue/thehitvr
[19] Jordi Moragues, “THE HIT”,

http://www.iua.upf.es/~jordi/prods/hit.html
[20] Tony Cabello, “iGlue Website”, http://www.iglue.org

651

